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Abstract

Diffusion models are widely used for image editing tasks.
Existing editing methods often design a representation ma-
nipulation procedure by curating an edit direction in the
text embedding or score space. However, such a proce-
dure faces a key challenge: overestimating the edit strength
harms visual consistency while underestimating it fails the
editing task. Notably, each source image may require a
different editing strength, and it is costly to search for an
appropriate strength via trial-and-error. To address this
challenge, we propose Concept Lancet (CoLan), a zero-
shot plug-and-play framework for principled representation
manipulation in diffusion-based image editing. At infer-
ence time, we decompose the source input in the latent
(text embedding or diffusion score) space as a sparse linear
combination of the representations of the collected visual
concepts. This allows us to accurately estimate the pres-
ence of concepts in each image, which informs the edit.
Based on the editing task (replace/add/remove), we per-
form a customized concept transplant process to impose
the corresponding editing direction. To sufficiently model
the concept space, we curate a conceptual representation
dataset, CoLan-150K, which contains diverse descriptions
and scenarios of visual terms and phrases for the latent
dictionary. Experiments on multiple diffusion-based image
editing baselines show that methods equipped with CoLan
achieve state-of-the-art performance in editing effectiveness
and consistency preservation. More project information is
available at https://peterljq.github.io/project/colan.

1. Introduction

How can we edit a given image following a specified concep-
tual guidance, say Cat→Dog or Sketch→Painting? This
problem was briefly discussed in the early work of Image
Analogies [12] in the 2000s, widely studied in the era of
generative adversarial networks [19, 70], and recently revolu-
tionized by diffusion models [14, 48]. Not only do diffusion
models shine in producing realistic images [42, 46], but they
also allow for conditioning on multimodal guidance such as
text prompts [21, 45] and regional masks [1, 16, 68], making
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Figure 1. Given a source image and the editing task, our proposed
CoLan generates a concept dictionary and performs sparse decom-
position in the latent space to precisely transplant the target concept.

it handy for image editing.
In this paper, we consider the task of utilizing diffusion

models for image editing that impose desired concepts based
on user prompts. Specifically, given a source image and its
source caption, our task is to modify the content, appearance,
or pattern of the image based on a given target prompt. To
accomplish it with diffusion models, a basic idea is to first
use the score predictor to perform the noising process (e.g.,
DDIM Inversion [49]) and then follow the denoising process
conditioned on the target concept. Such conditioning in the
diffusion-based backbones typically happens in a structured
latent space (score or text embedding space; to be detailed
in §2), where one moves a source latent vector towards an
edit direction (i.e., the shift from the source concept to the
target concept). A fruitful series of works have contributed
to enhancing the inversion process [17, 18, 27, 36, 51], in-
novating attention controls [4, 11, 40, 65], and tuning the
backbone with conditional instructions [3, 9, 39, 71].

Despite the remarkable progress, an often overlooked
issue is the magnitude of the concept representation to be
imposed, that is, determining how far to move along the edit
direction. Prior works [40, 65] typically assume a certain
amount of editing without adjusting the magnitude based on
the contexts or existing concepts of the given image. Such a
heuristic choice can be problematic as we show in Figure 2:
adding too much of the edit may overwhelm the image with
the target concept (Image (4)), while too little may fail to
fully remove the source concept (Image (2)). Hence, since
the presence of the source concept varies in every image,
proper estimation of the edit magnitude is necessary for
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accurate editing.
To address the aforementioned issue, we draw inspiration

from low-dimensional [22, 28] and compositional [25, 59]
structures in latent representations of diffusion models. In
this paper, we propose Concept Lancet (CoLan), a zero-shot
plug-and-play framework to interpret and manipulate sparse
representations of concepts for diffusion-based image edit-
ing. Our intuition is to sufficiently model the latent spaces
to analyze how much each concept is present in the source
representation, which allows for accurate transplant from the
source concept to the target one in the proper magnitude. We
state our contributions and workflows as follows:
• (§3.1) To allow for such an analysis, one needs a dictionary
of directions representing diverse concepts. Existing dictio-
naries are limited since they either contain concepts without
clear visual meanings (e.g., “hardship”), lack phrases (e.g.,
“made of wood”), or have only a limited number of con-
cepts. Thus, we collect a conceptual representation dataset,
CoLan-150K, of diverse descriptions for visual concepts and
compute a dictionary of concept vectors to the latent (text
embedding or score) space.
• (§3.2) At inference time, we propose to decompose the
source latent vector as a linear combination of the collected
visual concepts to inform the edit. To mitigate the optimiza-
tion inefficiency with an overcomplete dictionary, we instruct
a vision-language model (VLM) to parse image-prompt tu-
ples into a representative list of visual concepts as dictionary
atoms. For common editing tasks of replacing, we switch
the source concept vector in the decomposition with our
target concept vector and synthesize the edited image with
the backbone. The task of adding or removing concepts can
be recasted as special cases of concept replacing, detailed in
the method section.
• (§4) We conduct quantitative comparisons on multiple
diffusion-based image editing baselines and qualitative eval-
uations on the visual synthesis. Methods equipped with
CoLan achieve state-of-the-art performance in editing effec-
tiveness and consistency preservation. Notably, the plug-and-
play design of our method provides flexibility in the choice
of backbones and latent spaces.

2. Preliminaries in Diffusion-Based Editing
This section briefly discusses diffusion-based image editing
and how it involves a representation manipulation process in
either the text embedding or the score space.
DDIM Inversion. Diffusion model samples a new image z0

by gradually denoising a standard Gaussian zT through the
following reverse-time conditional denoising process:

zt−1 =
√
αt−1 ·

(
zt −

√
1− αtϵθ(zt, t, c)√

αt

)
+
√
1− αt−1 − σ2

t · ϵθ(zt, t, c)

+ σtϵt, with ϵt ∼ N (0, I) , (1)

Visualized Image(1) (2) (3) (4)

(1) (2)

(3) (4)

Edit Direction Concept Direction CoLan

𝑑others

Figure 2. Representation manipulation in diffusion models involves
adding an accurate magnitude of edit direction (e.g., Image (3) by
CoLan) to the latent source representation. Figure 5 and Figure 7
show more examples.

where zt is the denoised image at time t (t = 0, . . . , T ),
c is the text embedding of the caption of the image to be
sampled, and ϵθ(zt, t, c) models the score function [50] for
noise prediction. With the choice of σt = 0, the denoising
process in (1) enables DDIM inversion [49]. Specifically,
one replaces the forward process with the iterative calling of
ϵθ(·, t, c) to predict the forward noise for the source z0. The
forward process often stores anchor information (e.g., atten-
tion map) [4, 11, 40, 65]. Then the reverse process samples
the target image z′

0 with visual features corresponding to
altered concepts. The key ideas are first to utilize the anchor
information such that the denoising process can faithfully
reconstruct z0 when conditioned on c (often called sampling
in the reconstruction/source branch), and then to further
implant (1) with a representation manipulation procedure.

For simplicity, we describe the basic DDIM paradigm
here. We further elaborate variants of inversion methods for
exact recovery of z0 [18, 65] and different diffusion back-
bones (e.g., Stable Diffusion [43, 45], Consistency Model
[34, 51]) in Appendix §6 and §7.
Steering Reverse Process. Prior works have different
choices of representation manipulation in the space of text
embeddings [44] or diffusion scores [31] to vary visual syn-
thesis. A general paradigm is to impose an editing direction
(∆ϵ or ∆c) to the latent representation (the score function
prediction ϵθ(·; t, c) or the text embedding c, respectively)
in the editing backbone. Sampling with manipulated con-
cepts is often called sampling in edit/target branch.
• (Text Embedding Space) For instance, the work of [40]
edits the concept by manipulating the c in Equation 1 as

cedit = csource + w (cA − cB) ,

where ∆c = cA − cB is a generalized direction denoting
the shift from concept B towards concept A. In fact, this
formulation of Vector Addition (VecAdd) can be traced back
to word embeddings in language models: the work of [35]
observes that cqueen ≈ cking+w·(cwoman − cman), where cking
can be viewed as a source latent vector and cwoman − cman as
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Figure 3. The CoLan framework. Starting with a source image and prompt, a vision-language model extracts visual concepts (e.g., cat, grass,
sitting) to construct a concept dictionary. The source representation is then decomposed along this dictionary, and the target concept (dog) is
transplanted to replace the corresponding atom to achieve precise edits. Finally, the image editing backbone generates an edited image where
the desired target concept is incorporated without disrupting other visual elements.

an editing direction. Recent years have also witnessed such
an idea being applied to steering activations of large language
models (LLMs) [33, 57, 72] and VLMs [6, 30, 53, 54].
• (Score Space) Such an idea has also been applied in the
score space by adding a score ϵ with a ∆ϵ. For instance, the
work of [2, 8, 13] considered the recipe

ϵedit = ϵθ(·; t, csource)+w(ϵθ(·; t, ctarget)− ϵθ(·; t, csource)),

where ϵθ(·; t, csource) can be treated as the source latent vec-
tor ϵ, ϵθ(·; t, ctarget)−ϵθ(·; t, csource) as the edit direction ∆ϵ,
and w controls the amount of edit. One can also implement
csource = ∅ to have the unconditional score. More generally,
there is a line of works [5, 8, 13, 59, 62, 65] involving the
above formulation to steer or edit the synthesis.

3. Our Method: Concept Lancet
With the above background we are ready to propose our
method for accurate representation manipulation in diffusion-
based image editing. The high-level idea is that, instead of
arbitrarily setting the amount of edit, we will estimate what
and how much concepts are present in the source image to
inform the edit. This is done via collecting a dictionary of
concept vectors in the latent space and decomposing the
source latent vector into a linear combination of the dictio-
nary atoms to allow the concept transplant procedures, which
we shall discuss in §3.1 and §3.2 respectively.

3.1. Concept Dictionary Synthesis
Here the main goal is to collect a diverse set of concepts (and
the corresponding concept vectors in the latent space) that
are both visually meaningful and relevant for image editing,
such that the decomposition of a source latent vector captures
important visual elements and allows potential modifications
for effective editing. This naturally boils down to two steps:
curating visual concepts for stimulus synthesis and extracting

a concept vector from the stimuli. We describe our approach
below and compare it with the alternatives in the literature.

Curating Visual Concepts. Constructing domain-specific
concepts is widely adopted for evaluating and controlling
generative foundation models [23, 24, 26, 29, 63, 64]. To
model the rich semantics of a given concept, an emerging
line of work collects textual concept stimuli (i.e., a set of
examples, descriptions, and scenarios) for downstream LLM
or diffusion editing tasks [33, 40, 57, 72]. There are three
issues when applying these concepts in editing images:
• Many concepts for editing LLMs [33, 72], such as “hon-
esty” or “hardship,” are not catered to image editing in dif-
fusion models. Existing concept stimuli are typically in a
specialized format for LLM activation reading (e.g., begin
with second-person pronouns).
• Such concepts primarily focus on single-word descriptor
(e.g. “love”, “friendship”), rather than multi-word phrases
(e.g., “wearing sunglasses” or “made of wood”) that are
helpful to model visual space.
• Existing collection of concepts for image editing has a
limited number of concept vectors open-sourced (e.g., less
than 20 in [40] and less than 50 in [32, 41]).
To address these issues, we curate a comprehensive set of
visual concepts relevant to image editing tasks. Specifically,
for each editing task that consists of a source image, a source
prompt, and an editing prompt, we employ a VLM [37] to
parse the image prompts tuple and generate a list of relevant
visual concepts. This step ensures that our concepts are both
visually grounded and editing-relevant.

We then instruct an LLM [38] with in-context demon-
strations of stimulus synthesis to generate diverse stimuli
for each concept to capture various contexts in which the
concept shows up. The instructions are shown in Appendix
§10. After collecting concepts across all editing tasks, we
obtain 5, 078 concepts and a total of 152, 971 concept stim-
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Figure 4. Samples of the concept stimuli from CoLan-150K. Additional samples are attached in the Appendix §8.

uli, which we call CoLan-150K. Figure 4 shows samples
of the concept stimuli in our dataset. Compared to existing
collections of conceptual representation for diffusion-based
editing, CoLan-150K represents a significant scaling up and
provides richer and more diverse representations for each
concept. By sampling various observations of a concept, the
large set of stimuli helps accurately estimate a representation
that is robust to changes in contexts.
Concept Vector Extraction. Given the stimuli for each
concept, we now need to extract a representative direction
in the latent space. Let x be a concept (e.g., “wearing sun-
glasses”) and sx1 , . . . , s

x
K be its corresponding stimuli. We

first map each stimulus into the latent space using the text
encoder E of the diffusion model1. To read a robust con-
cept vector from the collection of embeddings of stimuli, we
draw inspiration from prior arts on Representation Reading
(RepRead) and propose two options: Arithmetic Average
(Avg) [33, 40, 52, 72] or Principal Component Analysis
(PCA) [30, 33, 72] on the set of embedding vectors. Avg
directly returns the mean of all stimulus embeddings and
PCA returns the first principal component of embeddings as
the concept vector:

dx = RepRead(E(sx1), . . . , E(sxK)). (2)

For each given source image, a specific collection of concept
vectors {dxi

}Ni=1 will form the concept dictionary, which
will be further used for decomposition analysis during infer-
ence (§3.2). Figure 4 shows samples of concepts and their
associated stimuli. We use Avg for the representation read-
ing stage in the experiments since it is more computationally
efficient.

3.2. Concept Transplant via Sparse Decomposition
Now that we have obtained a concept dictionary, we are
ready to describe how we decompose the latent code of the
image along the dictionary and transplant the concept.
Selecting Task-Specific Concepts. While our concept dic-
tionary provides a comprehensive collection of visual con-
cepts, not all concepts are relevant to a specific editing task.
To avoid spurious decompositions and make the method ef-
ficient, the VLM parses the source image-prompt pair and
identifies pertinent task-relevant concepts, as we have done

1For simplicity, we describe the concept extraction in the text embedding
space; see the Appendix §7 for the case of the score space.

in §3.1. The corresponding concept vectors are then assem-
bled into a dictionary matrix D ∈ Rd×N , where d is the di-
mension of the latent space and N is the number of concepts
in the dictionary. More details of constructing the dictionary
in a specific latent space (e.g., CLIP text embedding space)
are shown in Appendix §7.

Concept Analysis. Given a source latent vector v (either
from the text encoder or score function), we decompose it
along the directions in D through sparse coding. That is, we
solve the following optimization problem:

w∗ = argmin
w

∥v −Dw∥22 + λ ∥w∥1 (3)

where solutions of concept coefficients w ∈ Rn and λ > 0
is a regularization parameter that controls the sparsity of
the solution. In practice, we realize the sparse solver with
Elastic Net [66]. Such a decomposition yields

v = Dw∗ + r (4)

where w∗ contains the solved coefficients of each concept
vector for composition and r is the residual not explained by
the concepts in D.

Concept Transplant. To perform the representation manip-
ulation, we construct a modified dictionary D′ by replacing
the column of the source concept vector with that of the tar-
get concept. The edited latent representation is then obtained
as v′ = D′w∗ + r. This transplant scheme preserves the
compositional coefficients estimated from the source repre-
sentation while substituting the relevant concept vector. It
imposes the desired concept while maintaining the overall
structure of the remaining concepts in the source image.

We note that this concept replacing scheme generalizes
to concept insertion and removal. Indeed, concept removal
can be viewed as setting the target concept as the null con-
cept; we extract a direction for the null concept using the
same procedure as described in §3.1 with stimuli as empty
sentences. On the other hand, the case of concept insertion
is more subtle since there is no explicit source concept to
replace. Hence we instruct the VLM to comprehend the
source image and the target prompt to suggest an appropriate
source concept as the counterpart of the target concept. For
example, if the task is to add concept [rusty] to an image of
a normal bike, the VLM will identify the concept [normal]
for the concept dictionary and the following replacement.



Table 1. Evaluation of different baselines using Concept Lancet or Vector Addition. The best performance of each category is in bold and
the second best is underlined. For each metric under Consistency Preservation, the number on the left is evaluated on the whole image, and
the number on the right is evaluated on the background (outside the edit mask).

Representation
Manipulation Inversion Backbone

Consistency Preservation Edit Effectiveness (%, ↑)

StruDist
(×10−3, ↓)

PSNR (↑) LPIPS
(×10−3, ↓)

SSIM
(%, ↑)

Target
Image

Target
Concept

N.A. DDIM P2P [11] 69.01 39.09 15.04 17.19 340.3 221.3 56.56 70.36 24.35 21.10
N.A. DI P2P [11] 11.02 5.963 22.71 27.24 114.1 54.68 75.08 84.57 24.82 22.07
N.A. DI MasaCtrl [4] 23.34 10.40 19.12 22.78 160.8 87.38 71.12 81.36 24.42 21.37

VecAdd DI P2P-Zero [40] 53.04 25.54 17.65 21.59 273.8 142.4 61.78 76.60 23.16 20.81
CoLan DI P2P-Zero [40] 15.91 6.606 23.08 26.08 120.3 68.43 75.82 83.55 23.84 21.13

VecAdd VI InfEdit [65] 27.18 17.24 21.83 27.99 136.6 56.65 71.70 84.64 24.80 22.04
CoLan VI InfEdit (E) [65] 16.21 8.025 22.13 28.04 125.9 55.05 74.96 84.72 24.90 22.12
CoLan VI InfEdit (S) [65] 13.97 6.199 23.42 28.46 110.3 53.04 75.51 85.12 24.94 22.45

4. Experimental Results

We provide quantitative evaluations for baselines in §4.1 and
qualitative observations in §4.2. Finally, we provide visual
analysis of the concept vectors from CoLan-150K in §4.3.

4.1. Quantitative Evaluation
We perform a standardized quantitative evaluation of CoLan
against current methods with PIE-Bench [18]. Its editing
tasks are based on a broad collection of image sources (e.g.,
TEdBench [20], TI2I benchmark [56]) with diverse scene
types and editing categories.

Baselines. We compare editing backbones that fall into
two categories based on their concept transfer approach:
(1) mechanistic swap of attention maps including P2P [11]
and MasaCtrl [4], and (2) representation manipulation that
enables us to plug CoLan in the diffusion score space (S) of
InfEdit [65] and the text embedding space (E) of both InfEdit
and P2P-Zero [40]. We cover multiple inversion approaches
such as DDIM [49], Direct Inversion (DI) [18], and Virtual
Inversion (VI) [65]. Further implementation details can be
found in Appendix §7.

Metrics. The two main criteria are Consistency Preserva-
tion and Edit Effectiveness. Consistency Preservation is a
set of metrics aimed at evaluating the amount of semantic
information preserved during image editing. We report the
Structure Distance (StruDist) [55], PSNR [15], LPIPS [69],
and SSIM [58]. On the other hand, Edit Effectiveness mea-
sures the correctness of the edited part, and it is evaluated
by two metrics: Target Image metric computes the CLIP
similarity [44, 61] between the edited text and the edited
image, whereas Target Concept metric computes the CLIP
similarity between the edited text and the edit-masked region
of the target image.

Results. Table 1 reports our results. All backbones equipped
with CoLan have improved Edit Effectiveness, which indi-
cates that CoLan accurately edits images towards the desired
target concept. Moreover, we observe that backbones with

CoLan achieve better consistency preservation across the
board. For instance, on the P2P-Zero backbone, CoLan is
able to achieve a lower StruDist and LPIPS by nearly 50%
and a higher PSNR and SSIM by about 10%. While DI with
P2P achieves the best StruDist, CoLan ranks a very close
second for StruDist and overall achieves better performance
on all rest of the consistency metrics. We argue that StruD-
ist computes an average difference between the DINO-V2
feature maps of the two images. Hence this single metric is
largely dependent on a specific transformer, and checking
holistically four metrics is a fairer way for consistency eval-
uation. Notably, InfEdit with CoLan in the score space has
the most outstanding performance across multiple metrics.

Additionally, Table 2 shows the average time of sparse
decomposition of CoLan using the CLIP space of InfEdit
and P2P-Zero backbones. We observe that, since VLM helps
make the dictionary concise, the decomposition only oc-
cupies a small proportion of the total editing time. This
demonstrates that CoLan is efficient and inexpensive relative
to the overall computation cost of inference in diffusion mod-
els. Furthermore, Table 3 compares the editing performance
of CoLan given different dictionary sizes. As expected, we
observe that a larger CoLan dictionary is better at captur-
ing the presence of existing concepts in the source image,
leading to stronger editing performance. Overall, our quanti-
tative experiments demonstrate that the concept transplant
process of CoLan benefits from proper accurate and sparse
concept representations that exist in the CLIP space and the
diffusion score space for better image editing performance.

4.2. Qualitative Observation
This section provides qualitative results of edited images.
We compare the visual quality between images edited with a
given backbone and that complemented with CoLan.

4.2.1. Visual Comparison
Each target image can be segmented into two parts: i) the
region of interest, which corresponds to the source concept
and should be edited to express the target concept; and ii)
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Figure 5. Visual comparisons of CoLan in the text embedding space of P2P-Zero. Texts in gray are the original captions of the source
images from PIE-Bench, and texts in blue are the corresponding edit task (replace, add, remove). [x] represents the concepts of interest,
and [] represents the null concept.
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Figure 6. The histograms of solved magnitudes of the concept atoms in CoLan decomposition (text embedding space). As there are tens of
concepts in a single dictionary, the histogram includes the concepts whose CoLan coefficients have the top 10 largest magnitudes.

the background, whose contents should be intact through the
editing process. Here, we qualitatively analyze these two
aspects when using CoLan for image editing.

Ideally, the provided editing should be accurately re-
flected in the region of interest. We observe that editing
with the backbone alone often results in either exagger-
ated or understated editing. For example, in the task of
modifying from [spaceship] to [eagle] in Figure 7 (cap-
tion: “a woman in a dress standing in front of
a [spaceship]”), the InfEdit backbone alone yields an
edited image where the region of interest only resembles an
ambiguous bird, whereas an eagle is clearly visible when
plugging with CoLan. Moreover, in Figure 5, the example
with the caption “a [meerkat] puppy wrapped in a blue
towel.” has a blue towel wrapped around the meerkat in
the source image. With the P2P-Zero backbone alone, the
towel is missing from the output image, whereas the output
after plugging CoLan has the blue towel in nearly the same
position as that in the source image.

As seen, for both the regions of interest and backgrounds,
edited images are of higher quality when a backbone method

Table 2. Average time of sparse decomposition in CoLan for
different backbones.

Backbone Metric Time
(s)

Proportion
(%)

P2P-Zero Editing Process 38.74 100
Sparse Decomposition 0.153 0.394

Infedit (S) Editing Process 2.198 100
Sparse Decomposition 0.084 3.82

runs with CoLan. We postulate that this is possible because
CoLan respects the geometry of the concept vectors via
sparse decomposition. By identifying the correct coefficients,
our concept transplant is precise and does not significantly
affect non-targeted semantics.

4.2.2. Representation Decomposition
One of the key steps in our approach (discussed in §3.2) is
to linearly decompose the latent representation (from the
editing backbone) into a sparse combination of dictionary
atoms. The success of our downstream editing task hinges on
finding a proper set of concepts coefficients that accurately
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Figure 7. Visual comparisons of CoLan in the score space (first row) and text embedding space (second row) of InfEdit. Texts in gray are
the original captions of the source images from PIE-Bench, and texts in blue are the corresponding edit task (replace, add, remove).
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Figure 8. The histograms of solved magnitudes of the concept atoms in CoLan decomposition (score space). The histogram includes the
concepts whose CoLan coefficients have the top 10 largest magnitudes.

reflects the semantics in the source image. Here we verify
that CoLan indeed finds and analyzes representative concepts
that are visibly contributive to the given image.

Figures 6 and 8 present the magnitude histograms of the
concept coefficients solved by CoLan in the CLIP space
and score space respectively. For decompositions in the
score space (Figure 8), take as an example on the leftmost
captioned “a colorful bird standing on a branch”.
CoLan finds the top three concepts in the image including
“bird”, “beak”, and “detailed plumage”, all of which are
concepts relevant to the bird in the provided image. Similarly,
take the second image captioned “an orange cat sitting
on top of a fence” in Figure 6. The top concepts in
the histogram are key semantics including “cat”, “fence”
and “orange”. Overall, in both spaces, CoLan is able to
find descriptive concepts and solve coefficients to accurately
reflect the composition of semantics.

4.3. Representation Analysis in CoLan-150K
This section studies the concept vectors obtained from di-
verse concept stimuli of our CoLan-150K dataset. We eval-
uate the grounding of the concept vectors in §4.3.1 and the
variability of the concept in the edited images in §4.3.2.

Table 3. Average performance of backbones with CoLan for
different dictionary sizes (N ).

Backbone Metric N = 5 N = 10 N = 20 N = 30

P2P-Zero LPIPS (×10−3, ↓) 135.6 107.1 80.12 72.85
Target Concept 20.83 20.99 21.10 21.14

Infedit (S) LPIPS (×10−3, ↓) 56.28 55.87 53.96 53.11
Target Concept 22.05 22.09 22.38 22.40

4.3.1. Concept Grounding

An extracted concept vector is grounded when the vector
serves effectively in the editing backbone to impose the
corresponding visual semantics in the image. For instance, if
we use representation reading [33, 40, 57, 72] to convert the
stimuli under [green] to the concept vector, then we would
expect to see the color ‘green’ as we add this vector in the
image editing backbone.

We verify that our concept vectors are grounded in the
following way. For a given concept [x], we extract its con-
cept vector from CoLan-150K. Then we generate the edited
images by adding the concept vector in the backbone for
every source image. Lastly, we evaluate the difference be-
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Figure 9. Visualizations of edited images with decreasing strength
of the concept [fresh] extracted from our CoLan-150K dataset.
The values on top correspond to the coefficient wfresh for removing
the concept dfresh. CoLan solves w∗

fresh of −0.977 for the apple and
−1.16 for the lotus.

tween the CLIP(source image, “x”) and CLIP(edited image,
“x”). If the given concept vector is indeed grounded, we
would expect to see an increase in the metric. In Table 4,
we sample three of the concept directions [watercolor],
[dog], [wearing hat], and apply P2P-Zero with CoLan to
every source image in PIE-Bench. We further divided the
results based on the four image types: Artificial, Natural,
Indoor, and Outdoor. Across all image types and our given
concepts, we observe a significant increase in the CLIP simi-
larity, which means that the edited images are indeed towards
the desired concept direction, and the concept vectors are
grounded. The results with more concepts and visualization
can be found in Appendix §8.

4.3.2. Comparing Editing Strengths
As we argued in §2, proper image editing requires well-
estimated edit strength that depends on the presence of con-
cepts in the given source image. Visualizing the progressive
changes of the source image along the desired edit direc-
tion [7, 10, 41, 47] offers insights for estimating edit strength.
Here we compare the editing effects of the concept vectors
from our CoLan-150K dataset with grids of coefficients. Fig-
ure 9 and Figure 10 experiment with two scenarios: concept
removal and concept addition, respectively.

Take the top row of Figure 10 as an example. Our task
here is to add the target concept [green] to our source im-
age of an apple. Our method CoLan solves the concept
coefficient w∗

green = 0.586. Comparing to edited images by
a range of wgreen, we observe that the edited images with
wgreen > 0.586 gradually appear over-edited and corrupted,
whereas images with 0 < wgreen < 0.586 are still under-
edited for the target concept. More concretely, we observe
that the green color is not visible at wgreen = 0 and is visible
at wgreen = 0.6. Eventually, a brown patch appears on top at
wgreen = 0.9, and the apple morphed into a corrupted object
at wgreen = 1.5. Similarly, for concept removal in the second
row Figure 9, our method CoLan solves the concept coeffi-
cient w∗

fresh = −1.16. We observe that result images of the
lotus with wfresh < −1.16 appear over-edited, whereas those
with 0 > wfresh > −1.16 are under-edited. In summary, our
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Figure 10. Visualizations of edited images with increasing strength
of the concept [green] extracted from our CoLan-150K dataset.
The values on top correspond to the coefficient wgreen for adding
the concept vector dgreen. CoLan solves w∗

green of 0.586 for the
apple and 0.695 for the rose.

Table 4. Grounding of sampled concept directions in CoLan-150K.

Concept
Direction

Image
Type Source Edited Increase

(%, ↑)

[watercolor]

Artificial 15.20 18.08 18.95
Natural 12.37 18.31 48.02
Indoor 12.94 16.69 28.98

Outdoor 14.19 19.08 34.46

[dog]

Artificial 14.18 19.28 35.97
Natural 13.28 18.65 40.49
Indoor 12.46 18.29 46.81

Outdoor 13.08 18.35 40.29

[wearing
hat]

Artificial 12.58 14.77 17.41
Natural 11.73 14.02 19.49
Indoor 10.25 12.18 18.83

Outdoor 11.28 13.34 18.28

results demonstrate that a suitable choice of the strength is
important for high-quality image editing, and CoLan outputs
a solution that has edit effectiveness while preserving the
visual consistency.

5. Conclusion
This paper presents Concept Lancet (CoLan), a zero-shot,
plug-and-play framework for principled representation ma-
nipulation in diffusion-based image editing. By leveraging a
large-scale curated dataset of concept representation (CoLan-
150K), we extract a contextual dictionary for the editing task
and perform sparse decomposition in the latent space to accu-
rately estimate the magnitude of concept transplant. Image
editing backbones plugging with CoLan achieve state-of-the-
art performance in editing tasks while better maintaining
visual consistency. Through extensive quantitative and quali-
tative evaluations across multiple perspectives, we demon-
strate CoLan’s strong capability to interpret and improve
the image editing process. We provide further discussions
on limitations, future developments, and societal impacts in
Appendix §9.
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Supplementary Material

We organize the supplementary material as follows.
• §6 covers additional details of prior arts on diffusion-based
editing to complement those mentioned in §2.
• §7 provides descriptions for collecting the dataset CoLan-
150K and implementing concept transplant method CoLan.
• §8 gives extra visualizations on the dataset and the method.
• §9 discusses limitations, future works and societal impacts.
• §10 details the prompting templates used in dataset collec-
tion and inference.

6. Prior Arts for Diffusion-Based Editing
To generate a new image z0 based on text prompts, diffusion
models sample from a standard Gaussian zT and recursively
denoise it through the reverse process [49]:

zt−1 =
√
αt−1fθ(zt, t, c) +

√
1− αt−1 − σ2

t ϵθ(zt, t, c)

+ σtϵt, with ϵt ∼ N (0, I) . (5)

Here zt is the denoised image at time t, c is the text embed-
ding of the caption of the image to be sampled, ϵθ(zt, t, c)
and fθ(zt, t, c) are two networks that predict the score func-
tion [50] and the denoised image z0 respectively given c and
zt. As we elaborate below, different choices for αt, σt,fθ

give rise to a class of diffusion models for editing.
DDIM-Based Editing. By choosing σt = 0 and
fθ(zt, t, c) = zt−

√
1−αtϵθ(zt,t,c)√

αt
for every t, the denois-

ing process in (5) yields DDIM sampling [49]. To make sure
such a process generates the source image z0 faithfully, one
replaces the stand Gaussain zT with noise computed from
a special forward process that iteratively adds determinis-
tic noises, computed via ϵθ(·, t, c), to the source image z0.
Some regularization can improve the statistical properties
of these noises, resulting in better image editability during
the denoising process [40]. Recently, the work of [18] have
proposed Direct Inversion (DI) to add further guidance, al-
lowing exact recovery of z0 following the source branch and
then improving the visual quality of the edited image when
concept transfer is imposed.
Consistency-Model-Based Editing. Instead of parameter-
izing fθ using the learned score ϵθ, one can learn a sepa-
rate network for fθ(zt, t, c) to approximate the flow map
of the probablity flow ODE [50], the deterministic coun-
terpart of DDPM [14] sampling. With the above and the
choice of σt =

√
1− αt−1 for every t, the process in (5)

gives Multi-step Consistency Model Sampling [51], and
fθ(zt, t, c) in this case is called the Consistency Model
[34, 51]. Through a trained consistency model, one can ide-
ally denoise zt into z0 in one pass of fθ. However, the

denoised z
(t)
0 := fθ(zt, t, c) has low quality if zt is close

to a Gaussian, thus a multi-step sampling is adopted to im-
prove the sampled image quality [50]. For the image editing
purpose, [65] propose Virtual Inversion (VI) that guides the
process to sample the source image at every time t in the
source branch, i.e., z(t)

0 = z0,∀t.

7. Framework Details

Dataset Collection. Each concept in the CoLan-150K ap-
proximately consists of 30 stimuli. We use GPT-4o (with
vision module) [38] for parsing source input and proposing
the concepts. After curating all concepts, we use GPT-4o
(without vision module) to generate diverse concept stimuli.
The instructions for them are shown in §10.

Concept Transplant. When constructing the dictionary in
the CLIP text embedding space, each concept vector is a
sequence of tokens flattened as a single vector of dimension
d = 77× 768 = 59136, where 77 is the maximum number
of tokens after padding and 768 is the dimension of token
embeddings. For plugging CoLan on the text embedding
space of P2P-Zero, we refer to analyzing the process of
c+∆c in Algorithm 1 of [40]. For plugging CoLan on the
text embedding space of InfEdit, we refer to decomposing
the embedding of its source branch to solve the coefficients.
For plugging CoLan on the score space of InfEdit, we refer
to analyzing the εconsτn + εtgtτn − εsrcτn in Algorithm 2 of [65].
Specifically, given a concept x, its direction dx for concept
dictionary in the score space at the time step t is generated
as follows:

ϵx = ϵθ(·; t,RepRead(E(sx1), . . . , E(sxK)))

where the RepRead(·) corresponds to the representation
reading algorithms described in §3.1.

Evaluation Detail. In Table 1, we evaluate all diffusion-
based editing baselines with the backbone of Stable Diffu-
sion V1.5 [45], and consistency-based baselines with the
Latent Consistency Model [34] (Dreamshaper V7) which is
distilled from Stable Diffusion V1.5. The hyperparameter
for the sparsity regularizer λ = 0.01. The null embedding
or ∅ in the paper refers to the CLIP embedding of the empty
string. When adding/inserting a target concept, as there is
no counterpart described in the source caption, we instruct
the VLM to propose a counterpart present in the source im-
age and revise the source caption. The revised dataset will
be open-sourced together with all concept stimuli. We use
P2P-Zero as the backbone for the representation analysis in
CoLan-150K and comparing editing strengths. The experi-



Backbone + CoLanSource Image

a [black] bird with a yellow beak and yellow feet. 

[black] → [green]

Backbone + CoLanSource Image Backbone + CoLanSource Image

[two boats are docked on the shore of] a lake. [two 

boats are docked on the shore of] → [] 

a woman in sunglasses sitting at a table [with a 

bottles of water]. [with a bottles of water] → []

Backbone + CoLanSource Image

a bird standing on [clods].

[clods] → [eggs]

Backbone + CoLanSource Image Backbone + CoLanSource Image

a painting of a woman with [colorful paint] on her 

face. [colorful paint] → [drab paint]

a [white] dog lying on grass.

[white] → [leopard]

Backbone + CoLanSource Image

a [colorful] bird standing on a branch.

[colorful] → [red]

Backbone + CoLanSource Image Backbone + CoLanSource Image

three white [dumplings] on brown bowl. 

[dumplings] → [sushi]

an orange van with [surfboards] on top.

[surfboards] → [flowers]

Backbone + CoLanSource Image

[photograph] - window of the world by jimmy kirk.

[photograph] → [painting]

Backbone + CoLanSource Image Backbone + CoLanSource Image

a cat sitting in the [grass].

[grass] → [rocks]

a [rabbit] is sitting in a pile of colorful eggs.

[rabbit] → [cat]

Backbone + CoLanSource Image

a painting of a cup with a [smoke] coming out of 

it. [smoke] → [flower]

Backbone + CoLanSource Image Backbone + CoLanSource Image

a cute dog holding a [red] heart. 

[red] → [pink]

a [tiger] swimming in a pond of green algae.

[tiger] → [dog]

Backbone + CoLanSource Image

a painting of [a dog in] the forest.

[a dog in] → []

Backbone + CoLanSource Image Backbone + CoLanSource Image

a big ship [in a bottle] on the dark ocean. 

[in a bottle] → []

a man sitting on a rock with [trees] in the 

background. [trees] → [a city]

Figure 11. Additional visual comparison of CoLan in the text embedding space of P2P-Zero. We observe that the backbone plugging with
CoLan has editing results that visually better align with the task.

ments in §4 are performed on a workstation of 8 NVIDIA
A40 GPUs.

Pipeline. Algorithm 1 shows the full procedure of our pro-
posed framework CoLan. The first part of the algorithm is
to extract a set of concept vectors from the input editing
image-text tuples based on § 3.1), followed by the second
part where we transplant the target concept via sparse decom-

position in § 3.2. In the first part, we instruct a VLM to parse
the source input into a set of relevant concepts, and then we
instruct an LLM to generate concept stimuli for every con-
cept. Using the concept stimuli, we extract a collection of
concept vectors using representation reading from the latent
space of our diffusion model. Then, in the second part of
CoLan, we decompose the text embedding or diffusion score



Algorithm 1: Concept Lancet (CoLan) for Diffusion-based Image Editing
Input: Frozen diffusion-based image editing backbone Fθ, image editing tuples (source prompt, source image, target

prompt) P = {(pi, qi,p
′
i)}

Nq

i=1

Parse P with the vision-language model to collect the concepts X = VLM(P )
For each concept xi ∈ X : ▷ §3.1: Concept Dictionary Synthesis

Instruct the LLM to synthesize concept stimuli {sxi
j }Kj=1 = LLM(xi)

Extract the concept vector dxi
= RepRead((sxi

j }Kj=1)

Stack concept vectors {dxi}
Nx
i=1 as columns of the concept dictionary D.

For each source prompt-image pair (pi, qi) ∈ P : ▷ §3.2 Concept Transplant via Sparse Decomposition

Encode pi to the text embedding space or (pi, qi) to the diffusion score space as the source representation v

Solve for the compositional coefficients that reconstruct the source w∗ = argminw ∥v −Dw∥22 + λ ∥w∥1
Curate a modified dictionary D′ by replacing the column of the source concept with that of the target concept
Obtain the edited latent representation as v′ = D′w∗ + r.
Generate the edited image through the image editing backbone q′i = Fθ(v

′).
Output: The edited images Q′ = {q′

i}
Nq

i=1.
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Source Images

Figure 12. Visualizations of editing results. The first row shows the source images, the second row shows the results with the fixed edit
strength of 0.7 for the concept [dog] without CoLan analysis, and the third row shows the edit results with CoLan analysis.

of the source representation using sparse coding techniques.
After obtaining the coefficients of each concept vector, we
perform a transplant process with the customized operation
of removing, adding, or replacing. Finally, we synthesize the
edited images with the modified latent representation with
the image editing backbone.

8. Additional Results

This section provides additional results for CoLan. It in-
cludes more editing improvements with baseline models and
visualization of concept instances from our CoLan-150K
dataset.

Visual Comparison. Figure 11 shows additional visualiza-
tion of the image editing results. The experiment settings
follow §4.2. We observe that the editing backbone has a
better editing performance after plugging CoLan.

Concept Grounding. Figure 13 visualizes the edited images
with the extracted concept vectors [watercolor], [dog],
and [wearing hat] from the stimuli of our CoLan-150K
dataset. We observe that the edited images correctly reflect
the semantic meaning of the concepts, which indicates that
our concept stimuli successfully ground the concept. Fig-
ure 14 further shows additional samples of concepts and
their stimuli. Note that there are approximately 30 stimuli
per concept, and our figure shows the first three for each
concept.

Edit Strength. Figure 12 shows the editing results from
source images of the cat to the target concept dog without or
with CoLan. The synthesis setting follows the Comparing
Editing Strengths section in §4 and we fix the edit strength
to 0.7 if CoLan is not used. From the second row of the
figure, we observe that different source images of the cat
require different magnitudes of editing, and simply choosing
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Figure 13. Visualizations of concept grounding for sampled concepts from our CoLan-150K dataset. We observe that the extracted concept
vectors from our dataset corresponds to the desired semantics by visualization.

a unified strength for all source images will frequently result
in unsatisfactory results for different images (under-edit or
over-edit). Then in the third row of the figure, we show that
editing with CoLan results in more consistent and reasonable
visual results. This is because our framework adaptively
estimates the concept composition of each image and solves
customized edit strengths for each source image.

9. Limitations, Future Works, Societal Impacts
While CoLan demonstrates strong performance for diffusion-
based image editing, we elaborate on potential limitations
and directions for future work in this section.
Limitation. The current framework primarily operates upon
diffusion-based backbones with attention-control mecha-
nisms where source concepts correspond to certain regions of
interest. It will be challenging to perform spatial manipula-
tions that require editing across different sectors of attention
maps. For instance, consider tasks such as moving the cat
from right to left or relocating the table to the corner, which
shall require non-trivial operations in the attention modules.
Another challenge lies in handling numerical modifications,
such as changing the number of objects (e.g., changing an
image of two cats to have three cats) or composing numerical
relations with multiple different objects (e.g., adding two
apples to an image of three bananas).
Future Work. Future work could explore methods to en-
hance CoLan’s capabilities to handle spatial relationships
and global layout modifications while preserving its precise
concept manipulation advantages. For numerical editing, it
is worthy exploring the bag-of-words effect of CLIP or how
the diffusion model shall encode numerical concepts in a way

that straightforward manipulation is permitted [60, 63, 67].
The precise mapping between numerical concepts and their
representations in the latent space warrants further investiga-
tion to enable more sophisticated counting-based edits.
Societal Impact. Image editing frameworks with high user-
accessibility (through the prompt-based interface) raise con-
siderations about potential misuse. The ability to perform
precise conceptual edits could be exploited to create mislead-
ing, controversial, or deceptive content. While our frame-
work focuses on enhancing editing quality, future devel-
opment should incorporate safeguarding against malicious
requests and protecting copyrights in content creation.

10. Prompting Template
As mentioned in Section 3.1, we instruct the VLM to perform
two tasks: rewriting prompts for concept addition or inser-
tion and constructing detailed concept dictionaries. We then
instruct the LLM to synthesize concept stimuli. Figure 15
shows the instructions (prompting template) for rewriting
captions by identifying source concepts and generating re-
written prompts tailored for image editing tasks. Figure 16
shows the instructions for constructing a comprehensive con-
cept list by parsing multimodal information from the source
input. This ensures that the list captures diverse and unique
aspects of the source image and prompt. Finally, Figure 17
shows the instructions for generating diverse and contex-
tually rich concept stimuli, which enables the mapping to
conceptual representations.



brown hair

Brown hair can range in shade from 
light caramel to deep chocolate, 

providing a rich variety of 
options.

Individuals with brown hair may 
have natural highlights that give 
depth and dimension to their hair 

color.

Chestnut brown is a warm, reddish-
brown hair color that glows 
beautifully in sunlight.

candle

Candles provide soft, ambient 
lighting that can create a cozy 

atmosphere in any room.

A flickering candle casts dancing 
shadows on the walls, adding a 
sense of warmth and comfort.

Scented candles are infused with 
fragrances like lavender or 
vanilla, helping to create a 

relaxing environment.

cloudy sky

The sky is overcast with thick 
cumulus clouds, creating a soft, 
diffuse light over the landscape.

A cloudy sky casts a muted gray 
hue, affecting the mood of the 

scene below with an introspective 
calm.

Patches of blue peek through 
scattered clouds, hinting at the 
possibility of a clearing sky.

desert

Deserts are characterized by their 
arid environment and receive less 

than 25 centimeters of rain 
annually.

The Sahara Desert is the largest 
hot desert in the world, stretching 
across multiple countries in North 

Africa.

Erosion from wind and water can 
create dramatic rock formations 
found in desert environments.

digital art

Digital art is created using 
software tools such as Adobe 
Photoshop, Corel Painter, or 

Procreate.

The evolution of digital art has 
enabled artists to explore new 

styles and techniques not possible 
with traditional media.

Artists often use digital tablets 
and styluses to draw and paint, 
simulating the feel of natural 

media.

elegant

An elegant ballroom filled with 
chandeliers and lavish decorations 
sets the stage for a grand event.

The elegance of a swan gliding 
gracefully across a serene lake at 

dusk.

The minimalist design of a 
Scandinavian interior reflects a 

refined sense of elegance.

fireplace

A fireplace crackles softly, 
providing both warmth and a cozy 
ambiance on a cold winter night.

The mantel above the fireplace is 
often used to display photographs 

or holiday decorations.

Fireplaces can be fueled by wood, 
gas, or electricity, each offering 

distinct characteristics and 
maintenance needs.

fluffy

Fluffy clouds drift lazily across 
the sky, resembling puffs of cotton 

wool.

A fluffy white cat purrs 
contentedly as it curls up on a 

soft cushion.

Freshly fallen snow creates a 
fluffy blanket over the landscape.

garden

Gardens can be designed to include 
a variety of plants, including 
ornamental flowers, shrubs, and 

trees.

A vegetable garden is cultivated to 
grow produce such as tomatoes, 
lettuce, and carrots for home 

consumption.

A butterfly garden is planted with 
colorful, nectar-rich flowers like 
milkweed and lantana to attract 

butterflies.

glass container

Glass containers are typically 
transparent, allowing for easy 

viewing of their contents.

A mason jar is a popular type of 
glass container used for preserving 

food through canning.

Glass containers are often used to 
store spices in the kitchen, with 

airtight seals to maintain 
freshness.

historic architecture

Historic architecture often 
features intricate carvings and 

stonework that tell a story of the 
era in which it was built.

The Roman Colosseum, with its 
massive stone arches and elliptical 

structure, is a testament to 
ancient engineering prowess.

Victorian-era buildings are 
characterized by their ornate 

detail, steep gables, and patterned 
brickwork.

in the city

A bustling city street is full of 
traffic, with cars honking and 

people rushing by.

The city skyline is dominated by 
towering skyscrapers, casting long 

shadows as the sun sets.

Sidewalk cafes in the city are 
popular spots for people to sip 

coffee and watch passersby.

keyboard

A mechanical keyboard features 
individual switches for each key, 
providing tactile feedback and 

durability.

Wireless keyboards offer 
portability and convenience by 

using Bluetooth or RF technology 
for connectivity.

Ergonomic keyboards are designed to 
reduce strain on the wrists and 
hands, often featuring split 
designs or curved layouts.

living room

The living room often serves as the 
central gathering space for 

families to relax and entertain 
guests.

A cozy living room features a 
large, plush sofa adorned with 
soft, colorful throw pillows.

The living room is often equipped 
with a wall-mounted television and 
a sound system for entertainment.

looking at the camera

A child looks directly into the 
camera, capturing an expression of 

innocent curiosity.

The bride and groom pose for a 
photo, both looking directly at the 

camera with wide smiles.

A group of friends gathers for a 
selfie, all leaning in and making 
eye contact with the camera lens.

marble wall

Marble walls are often associated 
with luxury and elegance due to the 
stone's rich veining and natural 

beauty.

A marble wall can have a highly 
polished finish that reflects light 

and brightens a room.

The unique patterns of veining in 
marble walls can create a one-of-a-
kind visual impact, with swirls and 
lines varying from slab to slab.

on the grass

A toddler crawls on the grass, 
giggling as they touch the soft 

blades for the first time.

A couple enjoys a picnic on the 
grass under the shade of a 

sprawling oak tree.

Morning dew glistens like tiny 
pearls on the grass, catching the 

light of the rising sun.

purple

Purple has long been associated 
with royalty and luxury, stemming 

from the rarity of the dye 
historically used to create it.

A field of lavender in bloom paints 
the landscape a soft purple, with a 
calming fragrance wafting through 

the air.

The twilight sky often transitions 
through shades of purple as the sun 
sets, creating a peaceful ambiance.

spaceship

Spaceships are engineered for 
travel beyond Earth's atmosphere, 
equipped with advanced propulsion 

systems.

A spaceship hovers silently in deep 
space, its surface gleaming under 

distant starlight.

The interior of a spaceship often 
features zero-gravity living 
quarters and control panels.

snowflakes

Snowflakes are intricate ice 
crystals that form in the 

atmosphere under cold conditions.

Each snowflake has a unique 
pattern, with no two snowflakes 

ever being identical due to their 
complex formation process.

Snowflakes typically have a 
hexagonal shape due to the 
molecular structure of ice.

table lamp

Table lamps often come with a 
fabric shade that diffuses light to 

create a cozy ambiance.

A touch-activated table lamp allows 
users to adjust the brightness with 

a simple tap.

Table lamps can feature adjustable 
necks, making them perfect for 

reading or focused tasks.

tennis ball

A tennis ball is typically made of 
a rubber core covered in a fuzzy 

felt material, giving it a 
distinctive texture.

Tennis balls are often bright 
yellow to enhance visibility during 

play on the court.

The standard diameter of a tennis 
ball is about 6.7 centimeters, 
conforming to international 

regulations.

vibrant

The vibrant colors of a sunset cast 
a warm glow over the horizon.

A vibrant city street bustling with 
life, full of people, street 

vendors, and musicians.

A vibrant painting captures the eye 
with its bold use of color and 

dynamic brushstrokes.

wooden

Wooden furniture often showcases 
the natural grain and beauty of the 

wood used.

The creaking of a wooden floor adds 
character to an old house.

A wooden sculpture carved from oak 
can highlight the artist's skill 

and attention to detail.

Figure 14. Additional samples of the concept stimuli from CoLan-150K. Each concept consists of approximately 30 stimuli and this figure
samples the first three for a concept.



Rewriting Captions for Concept Addition/Insertion

You are one of the best experts in Generative Models and Concept Learning in the world. You are very good at designing
concept dictionary to research the representation in latent space from CLIP or Score-based Generative Models, which
have wide applications in image editing. You are a great expert in understanding and parsing multimodal information
from a given image. Now, given a source prompt, a target prompt, and a source image, your task is to rewrite the
source prompt for the image editing task. Usually, there is a focused pair of concepts in the source prompt and the
target prompt to be edited (e.g., "cat" to "dog"). The source concept is usually annotated in the brackets ("[]") in
the source prompt. However, in some editing tasks, there is no clear source concept mentioned in the source prompt.
Hence, for these tasks, you are required to comprehend the source image and identify the corresponding source concept.
After comprehending the source image, you need to generate a re-written source prompt with a clearly annotated source
concept.

Here are two demonstrations:

Source Prompt: a slanted mountain bicycle on the road in front of a building
Target Prompt: a slanted [rusty] mountain bicycle on the road in front of a building
Source Concept: ""
Target Concept: "rusty"
Source Image: (IMG)
Re-written Source Prompt: a slanted [new] mountain bicycle on the road in front of a building

Source Prompt: two birds sitting on a branch
Target Prompt: two [origami] birds sitting on a branch
Source Concept: ""
Target Concept: "origami"
Source Image: (IMG)
Re-written Source Prompt: two [real] birds sitting on a branch

The identified source concept should not be the same as the target concept. The response MUST be with brackets ("[]")
around the source concept. You should not use "without" frequently. Try your best to comprehend the image.
You should only output the re-written source prompt. DO NOT print anything else such as "Here are ...", "Sure, ...",
"Certainly, ...".
DO NOT print quotation marks unless necessary. Just return the string.

Source Prompt: <input>
Target Prompt: <input>
Source Concept: <input>
Target Concept: <input>
Source Image: <input>
Re-written Source Prompt: <fill the response here>

Figure 15. The instructions for rewriting the task of concept addition/insertion with the VLM-found source concept as the counter-part.



Concept Dictionary Construction

You are one of the best experts in Generative Models and Concept Learning in the world. You are very good at designing
concept dictionary to research the representation in latent space from CLIP or Score-based Generative Models, which
have wide applications in image editing. You are a great expert in understanding and parsing multimodal information
from a given image. Now, given a source prompt, a target prompt, and a source image, your task is to parse the
given information into a concept list. The concept list consists of concepts, attributes, objects, and items that
comprehensively describe the source image and cover the source prompt. Your concept list must have at least 15
concepts. As the concept list is for the task of image editing, there is a focused pair of concepts in the source
prompt and the target prompt to be edited. The source concept is usually annotated in the bracket ("[]") in the source
prompt. You must put the focused concept in the source prompt as the FIRST atom in the concept list. You must NOT put
the focused concept in the target prompt in the concept list.

Here are three demonstrations:

Source Prompt: a [round] cake with orange frosting on a wooden plate
Target Prompt: a [square] cake with orange frosting on a wooden plate
Source Concept: "round"
Target Concept: "square"
Source Image: (IMG)
Concept List: ["round", "cake", "orange", "frosting", "wooden", "plate", "swirl", "creamy", "crumbly", "smooth",
"rustic", "natural", "muted", "handmade", "warm", "minimalist", "unfrosted", "botanical", "bark", "inviting", "cozy",
"textured", "simple", "organic", "earthy", "soft", "classic", "contrasting", "neutral", "clean"]

Source Prompt: a painting of [a dog in] the forest
Target Prompt: a painting of the forest
Source Concept: "a dog in"
Target Concept: ""
Source Image: (IMG)
Concept List: ["a dog in", "painting", "forest", "trees", "leaves", "sunlight", "vibrant colors", "orange hues",
"pink trees", "purple plants", "playful", "cartoonish", "nature", "animals", "butterflies", "fantasy", "surreal",
"whimsical", "tall trees", "shadows", "depth", "light beams", "foliage", "dynamic", "warm tones", "imaginative",
"dreamlike", "motion", "soft textures", "layered composition", "bright atmosphere"]

Source Prompt: blue light, a black and white [cat] is playing with a flower
Target Prompt: blue light, a black and white [dog] is playing with a flower
Source Concept: "cat"
Target Concept: "dog"
Source Image: (IMG)
Concept List: ["cat", "black", "white", "blue light", "flower", "playing", "paws", "stone path", "curious", "whiskers",
"small", "fluffy", "outdoor", "pink petals", "focused", "nature", "detailed fur", "green stem", "bright", "youthful",
"movement", "natural light", "close-up", "gentle", "exploration", "soft shadows", "grass between stones", "alert",
"innocent", "delicate"]

The concepts in the list should not be redundant or repetitive. Each concept in the list represents a unique
perspective of objects, styles, and contexts. The response MUST be in Python list format.
You should have at least 15 concepts in the list. You should only output the Python list.
DO NOT print anything else such as "Here are ...", "Sure, ...", "Certainly, ...". Just return the list ["", "", ...,
..., ""].

Source Prompt: <input>
Target Prompt: <input>
Source Concept: <input>
Target Concept: <input>
Source Image: <input>
Concept List: <fill the response here>

Figure 16. The instructions for the VLM to parse the source image-prompt tuple into the concept list for the concept dictionary.



Concept Stimulus Synthesis

You are one of the best experts in Generative Models and Concept Learning in the world. You are very good at generating
concept stimuli to research the representation in latent space from CLIP or Score-based Generative Models, which have
wide applications in image editing. You are a great expert in providing relevant information and scenarios based on a
given concept. Now, given a concept, your task is to generate 30 (THIRTY) instances of concept stimuli for a given
concept. As the concept stimuli will be used for the task of image editing, we need comprehensive, diverse, and
accurate descriptions and examples for the concept.

Here are three demonstrations of the concept and its corresponding concept stimuli:

Concept: dog
Concept Stimuli:
[
"Dogs are known for their loyalty and strong bonds with humans.",
"A dog wags its tail excitedly when it sees its owner after a long day.",
"Puppies often chew on objects as a way to explore their environment.",
"The sound of a dog’s bark can vary depending on its breed and mood.",
"Dogs rely heavily on their sense of smell, which is far more sensitive than that of humans.",
"A dog runs alongside its owner during a morning jog, full of energy.",
...
]

Concept: cat
Concept Stimuli:
[
"Cats are known for their graceful, stealthy movements.",
"A cat stretches lazily under the warm afternoon sun.",
"Kittens explore their surroundings with curiosity and playfulness.",
"A cat’s purring has been shown to have a calming effect on humans.",
"Stray cats often rely on their instincts and sharp senses for survival.",
"The eyes of a cat reflect light in the dark, giving them superior night vision.",
...
]

Concept: cake
Concept Stimuli:
[
"Cakes are often baked in layers and filled with frosting or cream in between each layer.",
"A slice of cake reveals its moist interior, topped with a rich layer of chocolate ganache.",
"Cakes are a common centerpiece for celebrations such as birthdays, weddings, and anniversaries.",
"A cake adorned with fresh berries and whipped cream makes for a light, summery dessert.",
"Cupcakes are miniature cakes baked in individual paper liners and often topped with buttercream frosting.",
"The aroma of a freshly baked vanilla cake fills the kitchen with a warm, sweet scent.",
...
]

The concept stimuli in the list should not be redundant or repetitive. Each stimulus in the list represents a unique
perspective (e.g., styles, contexts, examples, attributes, descriptions, usages) of the concept. The response MUST be
in Python list format.
You should have at least 30 stimuli in the list. You should only output the Python list.
DO NOT print anything else such as "Here are ...", "Sure, ...", "Certainly, ...". Just return the list ["", "", ...,
..., ""].

Concept: <input>
Concept Stimuli: <fill the response here>

Figure 17. The instructions for the LLM to generat diverse stimuli given a concept.


